

23rd IAEE North American Conference

DRIVERS OF THE ENERGY SCENE What are they? Where do they head us?

WEC study chaired by Dr. Al-Moneef, presented by Jean-Marie Bourdaire

Mexico City, Oct. 21, 2003

WHY SUCH A STUDY?

• Long-term forecasts do not stand the test of time. Become wrong after a few years only

• Extrapolations (projections) or interpolations (scenarios) do not seem appropriate methods

• By telling an unique message on the future binding constraint, scenarios may be wrong

THAT IS THE QUESTION

WHAT FUTURE ENERGY PATH?

- All published scenarios are of the « red » type with acceptability, i.e. environment, and GHG emissions, the binding constraint
- Yet, in « blue » type scenarios, the binding constraints are availability & accessibility, but GHG concentrations may not reach 550 ppm

I. 1850-1948
II. 1948-1973
III. 1973-NOW
IV. NOW- 2050

PART I.

1850-1948

GDP drivers:

- Demographic trends
- Institutional capacity
- Technology

Energy drivers:

- Primary supply
- Final prices
- Quality/versatility

GDP DRIVERS 1850 to 1948

- **<u>Demography</u>** slow but balanced growth
- Institutions beginning of democracy
- *Technology* steam-engine, railways, cars
- **<u>Primary supply</u>** cheap & abundant coal
- *Versatility* use of coal is uneasy and dirty

FROM 1.0 IN 1850 TO 2.5 BILLIONS IN 1950

WORLD POPULATION 1850-1950

INSTITUTIONAL CAPACITY

- A **cumulative factor** associated to the stock of knowledge, physical, legal, and ethical «assets»
- It is the (growing or not) capacity of a country to incorporate more sophisticated technology
- It took more than 100 years (1800 to WWII) to build this accumulation in developed countries
- Most developing countries have not catch up yet in terms of institutions, e.g. property rights

SAME PATTERNS BUT DIFFERENT IMPACTS

PART II.

1950-1973

GDP DRIVERS 1950 to 1973

- **Demography** young and rapidly growing
- Institutions secure property rights & savings
- <u>Technology</u> cars, aircrafts, appliances
- **Primary supply** rapid expansion of oil
- *Versatility* oil is liquid, electricity grows

Exceptional average annual growth of 5%

FROM 2.5 IN 1950 TO 4.0 BILLIONS IN 1974

WORLD POPULATION GROWTH 1950-1974

WORLD TPER (MTOE) 1850-2000

THE OIL MIRACLE OF 1948-1973

- A low price, lower than that of coal, set by Middle-East producers after 1948
- A price first controlled by the TRC up to 1959 (US quota), and by OPEC after 1960
- A dynamic stability thanks to the snowballing growth of the oil market share
- A stability further enhanced by the dominance of the vertically integrated "Seven Sisters"

DID OIL CAUSED THE 1973 SHOCK?

US OIL PRODUCTIONS MIMIC DISCOVERIES

US PRODUCTIONS MIMIC PAST DISCOVERIES

OIL PRICE

PART III.

1974-NOW

THE NEW ENERGY SCENE

- *Energy demand started to decelerate* after its acceleration since the industrial revolution (energy curve turns from concave to convex)
- *Oil became the energy "at the margin"*, and the price-setter (direct or indirect) of energy, replacing coal in its former role
- Energy prices have now an impact on GDP and access because of the large shares of oil & gas and their high price volatility

ENERGY PRICE-SETTING

RANKING OF PRIMARY ENERGIES

GDP DRIVERS 1974 to NOW

- **<u>Demography</u>** beginning of the transition
- Institutions too little progress in reforms
- <u>Technology</u> CCGT & deepwater, IT
- **<u>Primary supply</u>** oil crises and price hikes
- *Versatility* reliance on new rigid energies

Average annual growth slows down to 3.0%

FROM 4.0 TO 6.0 BILLIONS IN 2000

WORLD POPULATION GROWTH 1974-2000

WORLD GDP GROWTH SLOWS DOWN - 1

WORLD GDP OVER TIME (G\$ 2000)

WORLD GDP GROWTH SLOWS DOWN - 2

WORLD OFFICIAL GROWTH RATES

ENERGY DECOUPLING-1

ENERGY DECOUPLING-2

ACCESS STOPS TO IMPROVE

PART IV.

NOW-2050

GDP DRIVERS NOW-2050

- **Demography** aging, peaking by 2040-50?
- *Institutions* will progress be achieved?
- <u>Technology</u> new materials, biotech, IT
- **<u>Primary supply</u>** supply & environment crises
- *Versatility* infrastructures to be changed?

Average annual growth as slow as 1.4%

FROM 6.0 TO 8.0? BILLIONS IN 2050

WORLD POPULATION GROWTH 2000-2050

WORLD GROWTH 2000-2050: 1.4%?

INSTITUTIONAL CAPACITY

- Education, gender equality, equitable society...
- Property rights, prudential rules, justice...
- Public infrastructures: water, roads, health...
- Market reforms & consumer empowerment
- What are the future prospects of institutional capacity for the developed, developing and in transition economies?

TECHNOLOGICAL PROGRESS

- If cheap/versatile energy was the main source of past productivity, what future prospects?
- given the possibility of rising oil production capacity constraints (non-ME & ME),
- given the need to rely on more remote/costly natural gas, in particular LNG from ME,
- given the need to curb down CO₂ emissions that mostly originate from the energy sector.

WILL NON-ME OIL MINIC DISCOVERIES?

WORLD EXCLUDING OPEC MIDDLE-EAST annual discoveries shifted by 30 years and productions discoveries shifted by 30 years FSU+DW rise productions Jean Laherrere

NON-ME OIL LESS FSU & DEEPWATER

NON MIDDLE-EAST OPEC OIL LESS FSU & DEEPWATER

MIDDLE-EAST OIL PRODUCTION

- On the average, Middle-East oil producing fields are *more than 50-years old*
- On a steady flow basis, they have the capacity to *produce for many future years*
- Yet, like Marathon runners who are not sprinters, they *cannot grow their production quickly*

NA GAS PRODUCTION

N.A. PRODUCTIONS MIMIC DISCOVERIES

20-year shifted discoveries announced the decline

NON FOSSIL FUEL SUPPLY

- Hydro: limited by environmental arguments
- Nuclear: stalemate in most OECD countries
- Wind & solar: intermittent and diffuse

Supply constraints may push energy prices up and limit future GDP growth

CONCLUSIONS

Many questions for existing or future scenarios

- Given institutional barriers and possible negative energy price feedbacks, *what GDP hypotheses?*
- If energy demand is threatened by high prices, in a context of low growth, *what access for the poor?*
- If hydrocarbons don't grow much, among nuclear, coal or renewables, *what supply for tomorrow?*
- In a low growth / low energy scenario, what GHG emissions and *what climate change threat?*